
Security:
Principles and Practice

Question

• Can you write a self-replicating C program?
– program that when run, outputs itself

• without reading any input files!

– ex: main() { printf(“main () { printf(“main () …

Main Points

• Security theory
– Access control matrix

– Passwords

– Encryption

• Security practice
– Example successful attacks

Security: Theory

• Principals
– Users, programs, sysadmins, …

• Authorization
– Who is permitted to do what?

• Authentication
– How do we know who the user is?

• Encryption
– Privacy across an insecure network

– Authentication across an insecure network

• Auditing
– Record of who changed what, for post-hoc diagnostics

Authorization

• Access control matrix
– For every protected resource, list of who is

permitted to do what

– Example: for each file/directory, a list of
permissions

• Owner, group, world: read, write, execute

• Setuid: program run with permission of principal who
installed it

– Smartphone: list of permissions granted each app

Principle of Least Privilege

• Grant each principal the least permission
possible for them to do their assigned work
– Minimize code running inside kernel

– Minimize code running as sysadmin

• Practical challenge: hard to know
– what permissions are needed in advance

– what permissions should be granted
• Ex: to smartphone apps

• Ex: to servers

Authorization with Intermediaries

• Trusted computing base: set of software
trusted to enforce security policy

• Servers often need to be trusted
– E.g.: storage server can store/retrieve data,

regardless of which user asks

– Implication: security flaw in server allows attacker
to take control of system

Authentication

• How do we know user is who they say they
are?

• Try #1: user types password
– User needs to remember password!

– Short passwords: easy to remember, easy to guess

– Long passwords: hard to remember

Question

• Where are passwords stored?
– Password is a per-user secret

– In a file?
• Anyone with sysadmin permission can read file

– Encrypted in a file?
• If gain access to file, can check passwords offline

• If user reuses password, easy to check against other systems

– Encrypted in a file with a random salt?
• Hash password and salt before encryption, foils precomputed

password table lookup

Encryption

• Cryptographer chooses functions E, D and keys KE, KD

– Suppose everything is known (E, D, M and C), should not be
able to determine keys KE, KD and/or modify msg

– provides basis for authentication, privacy and integrity

Sender
Plaintext (M)

Encrypt
E(M,KE)

Ciphertext (C)

Receiver
Plaintext (M)

Decrypt
D(C, KD)

Symmetric Key (DES, IDEA)

• Single key (symmetric) is shared between parties,
kept secret from everyone else
– Ciphertext = (M)^K; Plaintext = M = ((M)^K)^K
– if K kept secret, then both parties know M is authentic and

secret

Plaintext

Encrypt with

symmetric key

Ciphertext

Plaintext

Decrypt with

symmetric key

Public Key (RSA, PGP)

Keys come in pairs: public and private

– Each principal gets its own pair
– Public key can be published; private is secret to

entity
• can’t derive K-private from K-public, even given

M, (M)^K-priv

Plaintext

Encrypt with

public key

Secret Ciphertext

Plaintext

Decrypt with

private key

Public Key: Authentication

Keys come in pairs: public and private
– M = ((M)^K-private)^K-public
– Ensures authentication: can only be sent by sender

Plaintext

Encrypt with

PRIVATE key

Authentic ciphertext

Plaintext

Decrypt with

PUBLIC key

Public Key: Secrecy

Keys come in pairs: public and private
– M = ((M)^K-public)^K-private
– Ensures secrecy: can only be read by receiver

Plaintext

Encrypt with

PUBLIC key

Secret ciphertext

Plaintext

Decrypt with

Private key

Encryption Summary

• Symmetric key encryption
– Single key (symmetric) is shared between parties, kept

secret from everyone else
– Ciphertext = (M)^K

• Public Key encryption
– Keys come in pairs, public and private
– Secret: (M)^K-public
– Authentic: (M)^K-private

Two Factor Authentication

• Can be difficult for people to remember encryption
keys and passwords

• Instead, store K-private inside a chip
– use challenge-response to authenticate smartcard
– Use PIN to prove user has smartcard

a

challenge: x

response:

(x+1)^K-private

smartcard

Public Key -> Session Key

• Public key encryption/decryption is slow; so can use public
key to establish (shared) session key
– assume both sides know each other’s public key

((K,y,x+1)^C-public)^S-priv

client serverclient ID, x

(y+1)^K

client
authenticates
server

server
authenticates
client

Symmetric Key -> Session Key

• In symmetric key systems, how do we gain a
session key with other side?
– infeasible for everyone to share a secret with

everyone else
– solution: “authentication server” (Kerberos)

• everyone shares (a separate) secret with server
• server provides shared session key for A <-> B

– everyone trusts authentication server
• if compromise server, can do anything!

Kerberos Example

A

Server

B

I’d
 lik

e a ke
y fo

r A
<->

B

(K
ab,(A

<->
B, K

ab)^
Ksb

)K
sa

(A<->B, Kab)^Ksb

Message Digests (MD5, SHA)

• Cryptographic checksum: message integrity
– Typically small compared to message (MD5 128 bits)

– “One-way”: infeasible to find two messages with same
digest

Transform

Initial digest Message (padded)

Transform

Message digest

512 bits 512 bits 512 bits

…

…

Transform

Security Practice

• In practice, systems are not that secure
– hackers can go after weakest link

• any system with bugs is vulnerable

– vulnerability often not anticipated
• usually not a brute force attack against encryption system

– often can’t tell if system is compromised
• hackers can hide their tracks

– can be hard to resecure systems after a breakin
• hackers can leave unknown backdoors

Tenex Password Attack

• Early system supporting virtual memory

• Kernel login check:
for (i = 0; i < password length; i++) {

 if (password[i] != userpwd[i]) return error;

}

return ok

Internet Worm

• Used the Internet to infect a large number of
machines in 1988
– password dictionary
– sendmail bug

• default configuration allowed debug access
• well known for several years, but not fixed

– fingerd: finger tom@cs
• fingerd allocated fixed size buffer on stack
• copied string into buffer without checking length
• encode virus into string!

• Used infected machines to find/infect others

Ping of Death

• IP packets can be fragmented, reordered in flight
• Reassembly at host

– can get fragments out of order, so host allocates buffer to
hold fragments

• Malformed IP fragment possible
– offset + length > max packet size
– Kernel implementation didn’t check

• Was used for denial of service, but could have been
used for virus propagation

UNIX talk

• UNIX talk was an early version of Internet chat
– For users logged onto same machine

• App was setuid root
– Needed to write to everyone’s terminal

• But it had a bug…
– Signal handler for ctl-C

Netscape

• How do you pick a session key?
– Early Netscape browser used time of day as seed to the

random number generator

– Made it easy to predict/break

• How do you download a patch?
– Netscape offered patch to the random seed problem for

download over Web, and from mirror sites

– four byte change to executable to make it use attacker’s
key

Code Red/Nimda/Slammer

• Dictionary attack of known vulnerabilities
– known Microsoft web server bugs, email attachments, browser helper

applications, …
– used infected machines to infect new machines

• Code Red:
– designed to cause machines surf to whitehouse.gov simultaneously

• Nimda:
– Left open backdoor on infected machines for any use
– Infected ~ 400K machines

• Slammer:
– Single UDP packet on MySQL port
– Infected 100K+ vulnerable machines in under 10 minutes

• Million node botnets now common

More Examples

• Housekeys

• ATM keypad

• Automobile backplane

• Pacemakers

Thompson Virus

• Ken Thompson self-replicating program
– installed itself silently on every UNIX machine,

including new machines with new instruction
sets

Add backdoor to login.c

• Step 1: modify login.c
A:

if (name == “ken”) {

 don’t check password;

 login ken as root;

}

• Modification is too obvious; how do we hide
it?

Hiding the change to login.c

• Step 2: Modify the C compiler
B:

if see trigger {

 insert A into the input stream

}

• Add trigger to login.c
/* gobblygook */

• Now we don’t need to include the code for the
backdoor in login.c, just the trigger
– But still too obvious; how do we hide the modification to

the C compiler?

Hiding the change to the compiler

• Step 3: Modify the compiler
C:

if see trigger2 {

 insert B and C into the input stream

}

• Compile the compiler with C present
– now in object code for compiler

• Replace C in the compiler source with trigger2

Compiler compiles the compiler

• Every new version of compiler has code for B,C
included
– as long as trigger2 is not removed
– and compiled with an infected compiler
– if compiler is for a completely new machine: cross-

compiled first on old machine using old compiler

• Every new version of login.c has code for A included
– as long as trigger is not removed
– and compiled with an infected compiler

Question

• Can you write a self-replicating C program?
– program that when run, outputs itself

• without reading any input files!

char *buf =

 "char *buf = %c%s%c; main(){printf(buf, 34, buf, 34);}";

main() { printf(buf, 34, buf, 34); }

Security Lessons

• Hard to re-secure a machine after penetration
– how do you know you’ve removed all the backdoors?

• Hard to detect if machine has been penetrated
– Western Digital example

• Any system with bugs is vulnerable
– and all systems have bugs: fingerd, ping of death, Code

Red, nimda, …

	Slide 1
	Question
	Main Points
	Security: Theory
	Authorization
	Principle of Least Privilege
	Authorization with Intermediaries
	Authentication
	Question
	Encryption
	Symmetric Key (DES, IDEA)
	Public Key (RSA, PGP)
	Public Key: Authentication
	Public Key: Secrecy
	Encryption Summary
	Two Factor Authentication
	Public Key -> Session Key
	Symmetric Key -> Session Key
	Kerberos Example
	Message Digests (MD5, SHA)
	Security Practice
	Tenex Password Attack
	Internet Worm
	Ping of Death
	UNIX talk
	Netscape
	Code Red/Nimda/Slammer
	More Examples
	Thompson Virus
	Add backdoor to login.c
	Hiding the change to login.c
	Hiding the change to the compiler
	Compiler compiles the compiler
	Question
	Security Lessons

